3.603 \(\int \frac{(a+b \sec (c+d x))^4}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=208 \[ \frac{2 \left (18 a^2 b^2+a^4+b^4\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}-\frac{2 b^2 \left (a^2-b^2\right ) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}-\frac{4 a b \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d}+\frac{8 a b \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 \sin (c+d x) (a+b \sec (c+d x))^2}{3 d \sqrt{\sec (c+d x)}} \]

[Out]

(8*a*b*(a^2 - b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(a^4 + 18*a^2*b^2 +
 b^4)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (4*a*b*(a^2 - 6*b^2)*Sqrt[Sec[c
 + d*x]]*Sin[c + d*x])/(3*d) - (2*b^2*(a^2 - b^2)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a^2*(a + b*Sec[c
 + d*x])^2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.348607, antiderivative size = 208, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {3841, 4076, 4047, 3771, 2641, 4046, 2639} \[ -\frac{2 b^2 \left (a^2-b^2\right ) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}-\frac{4 a b \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 \left (18 a^2 b^2+a^4+b^4\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{8 a b \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 \sin (c+d x) (a+b \sec (c+d x))^2}{3 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^4/Sec[c + d*x]^(3/2),x]

[Out]

(8*a*b*(a^2 - b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(a^4 + 18*a^2*b^2 +
 b^4)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (4*a*b*(a^2 - 6*b^2)*Sqrt[Sec[c
 + d*x]]*Sin[c + d*x])/(3*d) - (2*b^2*(a^2 - b^2)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a^2*(a + b*Sec[c
 + d*x])^2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 3841

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4076

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[(b*C*Csc[e + f*x]*Cot[e + f*x]*(d*Csc[e + f*x
])^n)/(f*(n + 2)), x] + Dist[1/(n + 2), Int[(d*Csc[e + f*x])^n*Simp[A*a*(n + 2) + (B*a*(n + 2) + b*(C*(n + 1)
+ A*(n + 2)))*Csc[e + f*x] + (a*C + B*b)*(n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C,
n}, x] &&  !LtQ[n, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x))^4}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2}{3} \int \frac{(a+b \sec (c+d x)) \left (5 a^2 b+\frac{1}{2} a \left (a^2+9 b^2\right ) \sec (c+d x)-\frac{3}{2} b \left (a^2-b^2\right ) \sec ^2(c+d x)\right )}{\sqrt{\sec (c+d x)}} \, dx\\ &=-\frac{2 b^2 \left (a^2-b^2\right ) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{4}{9} \int \frac{\frac{15 a^3 b}{2}+\frac{3}{4} \left (a^4+18 a^2 b^2+b^4\right ) \sec (c+d x)-\frac{3}{2} a b \left (a^2-6 b^2\right ) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=-\frac{2 b^2 \left (a^2-b^2\right ) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{4}{9} \int \frac{\frac{15 a^3 b}{2}-\frac{3}{2} a b \left (a^2-6 b^2\right ) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (a^4+18 a^2 b^2+b^4\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=-\frac{4 a b \left (a^2-6 b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}-\frac{2 b^2 \left (a^2-b^2\right ) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\left (4 a b \left (a^2-b^2\right )\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (\left (a^4+18 a^2 b^2+b^4\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 \left (a^4+18 a^2 b^2+b^4\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}-\frac{4 a b \left (a^2-6 b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}-\frac{2 b^2 \left (a^2-b^2\right ) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\left (4 a b \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{8 a b \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 \left (a^4+18 a^2 b^2+b^4\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}-\frac{4 a b \left (a^2-6 b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}-\frac{2 b^2 \left (a^2-b^2\right ) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.08274, size = 130, normalized size = 0.62 \[ \frac{\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \left (2 \left (18 a^2 b^2+a^4+b^4\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+24 a b \left (a^2-b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\frac{\sin (c+d x) \left (a^4 \cos (2 (c+d x))+a^4+24 a b^3 \cos (c+d x)+2 b^4\right )}{\cos ^{\frac{3}{2}}(c+d x)}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^4/Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(24*a*b*(a^2 - b^2)*EllipticE[(c + d*x)/2, 2] + 2*(a^4 + 18*a^2*b^2 + b
^4)*EllipticF[(c + d*x)/2, 2] + ((a^4 + 2*b^4 + 24*a*b^3*Cos[c + d*x] + a^4*Cos[2*(c + d*x)])*Sin[c + d*x])/Co
s[c + d*x]^(3/2)))/(3*d)

________________________________________________________________________________________

Maple [B]  time = 2.028, size = 777, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^4/sec(d*x+c)^(3/2),x)

[Out]

-2/3*(-8*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+8*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(a^3+6*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(a^4+12*a*b^3+b^4)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2
*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^4+18*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b^2+EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))*b^4-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3*b+12*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2))*a*b^3)*sin(1/2*d*x+1/2*c)^2+a^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+18*a^2*b^2*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)+(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^4-12*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*
d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c)
,2^(1/2))*a^3*b+12*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^3)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1/2*d*x+1/2*c)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{4}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^4/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{4} \sec \left (d x + c\right )^{4} + 4 \, a b^{3} \sec \left (d x + c\right )^{3} + 6 \, a^{2} b^{2} \sec \left (d x + c\right )^{2} + 4 \, a^{3} b \sec \left (d x + c\right ) + a^{4}}{\sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b^4*sec(d*x + c)^4 + 4*a*b^3*sec(d*x + c)^3 + 6*a^2*b^2*sec(d*x + c)^2 + 4*a^3*b*sec(d*x + c) + a^4)
/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**4/sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{4}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^4/sec(d*x + c)^(3/2), x)